D-A141 514 REUSE IN THE CONTEXT OF A TRANSFORMATION BASED
HETHDDOLOGV(U) UNIVERSITY OF SDUTHERN CALIFORNIA MARINA

L REY INFORMATION SCIENCES INST M 5 FEATHER RPR 84

UNCLRSSIFIED ISl/RS 83-125 MDA9G3-81-C-8335 F/G 972

b\ B B A A R A A A A A R A O T 00 A SO Eos S A AT Mg

T 5
L % N .
Ly :
=2 ¢
.\:q :'
-“_-. >
o ,
&‘. . ‘.
P
L ;
» - 1
ASA .
....I
fae
I.' -
v, ", ‘
Cox
) "_-‘

'™ A
{LA&
WA .4

ey
.
AR,

i
LvL

13
\ -
A »} ‘
", ’

.{l‘.

ks
S

s lize N

==

P i
N

0
R

IS ¢

L

"IECEEE

EERE

&{ "" 1] 5% Iz
o = 2

A
.

- 22 it e

.':u‘

:'i

i MICROCOPY RESOLUTION TEST CHART
'c‘j NATIONAL BUREAU OF STANDARDS-1963.A

'_ e AR -

S N . - L Y
. --.r e A A A AT R
RS LA .'z')." SR .-gim...'.._. SPBAGIREREHINAN, Ch SR RO S L RO LR O LR R LI T,

\ ISI Reprint Series

ISI/RS-83-127

April 19T
) N

/ e
/A

0

. ..:

- .

of Southern %.y ftt Ai
SRS \1§7 €
California %3-SR

-

i A ‘j‘ﬂ,,i S

University ' S g-?, ‘ %
¥
i

T

Martin S. Feather

LY Y

L
RSN
ala a

Reuse in the Context of a »1
Transformation Based Methodology ‘

Reprinted from Proceedings of the Workshop cn Reusability
in Programming, Newport, Rhode Island, 7-9 September 1983.

AD-A141 514

. i
4 . -

UAY 151984
i
AT

DTIC FILE COPY

“‘—:ﬁ\'ed
TR AN
1 o valen s
I ' PR
:') oy -_’/

INFORMATION -

SCIENCES —ﬁ 213/822-1511
INSTITUTE 4676 Admiralty Way/Marina del Rey/California 902926695

g4 05 15 221

S RIS 4 S IR PRI U R S G YRR ISP TR P TPREITE T T N TIPS L T
» mml‘.ﬂ&ﬁ;@iyﬂ@;ﬁl I N A S A i R U A DI I S N S N T S

- Ry
~ .
* ’ --~ y
{\' .

Unclassified -

- SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) .

y READ INSTRUCTIONS Y

. REPORT DOCUMENTATION PAGE pEFEAD INSTRUCTIONS :

. ~ 1. REPORYT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT’S CATALOG NUMBER ‘
.. ISI/RS-83-125 h 47y / ‘5// l/ .
4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED i,

Reuse in the Context of a Transformation Based Methodology Research Report s

6. PERFORMING ORG. REPORT NUMBER .:'.-f
;
= » 7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s) -

[

Martin S. Feather MDAG03 81 C 0335 .

: <
- 9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT PROJECT, TASK "
USC/Information Sciences Institute
4676 Admiralty Way Ny

Marina del Rey, CA 90292-6695 9
11. CONTROLLING OFF{CE NAME AND ADDRESS 12. REPORT DATE '

Defense Advanced Research Projects Agency April 1984
- . <4
. 1400 Wilson Blvd. 13. NUMBER OF PAGES
b Arlington, VA 22209 15 -
- 4. MONITORING AGENCY NAME & ADDRESS(iIf dilferent from Controlling Office) | 15. SECURITY CLASS. (of this report)

' Unclassified ()
T5a. DECL ASSIFICATION/ DOWNGRADING "l

SCHEDULE oo

16. DISTRIBUTION STATEMENT (of this Report)

,..
P
A

This document is approved for public release; distribution is unlimited. v

P
s ey

B
y 23

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if dilferent from Report)

o
o'
)
ey

o Ry
. 18. SUPPLEMENTARY NOTES ::::_
~ RS
ot This report is a reprint of a paper that appears in the proceedings of the Workshop on Reusability in >
;3 Programming, held in Newport, Rhode island, 7-9 September 1983. The workshop was sponsored by ::-j
ITT Programming, Stratford, Connecticut.

19. KEY WORDS (Continue on reverse side If necessary and identity by block number) :..-.:

o~

maintenance, program development, program specification, program transformation. reusability ::::Z

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

(OVER)

DD 5%, 1473 eoimion oF 1 nOv 68 1s OBsOLETE

S/N 0102-014- 6601 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (ﬁon Data Entered)

o O L O D O A AN R N e W e T e e e

Ao
-.I
nf
Ry Unclassified
':-:-" SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
- '('\
e 20. ABSTRACT
:"'.‘:
o ~
(- e)
Ao Our research group at ISi aims to improve the program development process by applying program
transformation to develop implementations for specifications. Following this methodology, the
,.'-:_ development of a piece of software involves its specification in a formal specification language, and
- subsequent machine-assisted transformation of that specification into an implementation
s (conventional program). Subsequent maintenance and modification of software developed in this
: manner is achieved by modifying the specification, and reperforming the transformational
Ry development to derive a new implementation. Thus reuse occurs through reusing the original
g specification, and reusing the original transformational development of that specification.
SN
Y ¢ ¢ 1-Ourapproach is distinguished by the nature of our specification language, which has been designed
": to minimize the gap between informal conceptualization and formal specification. A beneficial result ‘
. of this is that maintenance and modification at the specification level is relatively straightforward. | 4
- Further, the techniques that we—appty in transforming specifications into implementations are Ry
3‘,-. * themselves applied repeatedly, and ﬁserve to capture our programming knowledge in a conveniently j:
{:f reusable manner. Consideration of an example drawn from the domain of process control illustrates T
:-,:; these points. (-
» ,'- . . ’ R j i
sd / \, LA N 4 ﬁ
N -
> n.‘ .-
(YRS .
LR =
AR I
i
—n
;:-‘j
e
X
~
30
.-::.f
ny
ey
2
~
T
~ %
ENA
.".‘i
i
R
::.::
--‘
L
.'..(_
oo
L
X
Lo Unclassified
u SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
l’:'
=

SealtaTip RSN '," S T LT L e e e e e e B AT
“at 'A.L PR PPN, | l_..L-L.-LAL _MLMAAW; LL‘—.LL_.AA_LLL?._.L.A

........ Len R e L D A i A L T e L I i R ™, ..

3 IS Reprint Series

‘ ISI/RS-83-125
April 1984

{

"l

:‘: University

X of Southern

X California

Martin S. Feather!

Reuse in the Context of a
\ Transformation Based Methodology

' Reprinted from Proceedings of the Workshop on Reusability
- in Programming, Newport, Rhode Island, 7-9 September 1983,

~ &~
ot ata

555

., ot

e ovant s

Preeeddd

S A e S A
. ———

- INFORMATION
: SCIENCES 21378221511
Y ! INSTITUTE 4676 Admiralty Way/Marina del Rey/California 902926695
This research is supported hy the Defense Advanced Research Projects Agency under Contract No. MDAS03 81 C 0335 Views and
v conclusions contained in this report are the author's and should not be interpreted as representing the official opinion or policy of DARPA,
= the US Government, or any person or agency connected with them

)

‘

WA N A B P LG S A A U LU T T SR

P -\‘\"\ A = \..'h '-')\'.q“ ’,f"f'f{'('{’.b\".- - ~_\.'. “

28)il s
., @ L:.;,;

»

ta’e
U l‘.l:'l. l‘:’

)

IS! Reptrint Series
This report is one in a series of reprints of articles and papers written by ISI
research statf and published in professional journals and conference
proceedings. For a complete list of IS reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way

Marina de!l Rey, CA 90292-6695
USA

.

.

>

a. s
)
F)

R -" u" o“.l‘u
a3 05"

WRESS

-

. N a2 ¢ Yy A
. t ,";'.',fj'.'_'(,. '’

A A A
s

L)
D
N Y

,v
)
”,

Q -
XL |

Ji

REUSE IN THE CONTEXT OF A TRANSFORMATION BASED METHODOLOGY

MARTIN S. FEATHER

USC / information Sciences Institute
4676 Admiraity Way
Marina gel Rey CA 90291

1. A DEVELOPMENT METHODOLOGY

At S| we are researching a methodology for assisting software
development. It is our firm belief that to make significant progress
in this direction we must formalize. record and manipulate the
development process itself. The methodology we advocate is one
of constructing a formal specification expressing desired
(tunctional) behaviour. and then transforming this into an
implementation to achieve efficiency whilst preserving
functionality.

What differentiates our research from that of others pursuing
this transformational approach is the nature of our specification
language. This has been designed to minimize the distance
between informal conceptualization of tasks and tormal
specifications of the same. A consequence of this is that the
nchness of our specification language makes automatic
compilation into tolerably efficient programs beyond our present
capability (and to restrict ourselves to the use of only those
specification constructs that we can presently compile would. we
feel. be a grave mistake for our or any other specification
language). Hence the transformation from specification to
implementation must rely upon human guidance (although it can
and should benefit from machine assistance to record and
perform the detailed steps).

Within this methodology reuse may occur at two levels:

- Reuse at the specification level - our specification
language comprises a small set of powerful
constructs which are used in stylistically recurring
ways in specitying a broad range of tasks. Reuse aiso
occurs when a specification is modified. either to take
into account desired changes inspired by feedback
from the implementation. or to adapt that existing
specification to a similar task.

- Reuse at the development level - when instances of
the high ievel specification constructs have to be
transformed into efficient (implementation)
constructs: stylistically similar uses of such constructs
give rise to the same range of issues in selecting an
approprigte implementation and in application of
trangformations to map them into their
implementations. Reuse aiso occurs when a modified
specificstion has to be redeveioped into an
impiementation, or altered requirements for efficiency
permute the various efficiency tradeofis, and so would
ingpire different choices during the development of an
implementation of the same specification - in both
cases reuse of some of the original development may
take place

LSS LTSRS EA TR PE TN SRR TR SLGRN (Al S R SR Y
* ()

We stress the importance of performing modification and
maintenance on the specification. and then redeveloping the
implementation from that. as opposed to tinkering with the
implementation directly.

Reuse arising from modification of a specificaton and its
subsequent reimpiementation comprise those aspects of reuse
with which we have had the least experience. and form an area of
research we intend to pursue in the near future - see the
companion paper by Balzer for details in this regard. The other
forms of reuse - that is, recurring themes in using high level
specification constructs and in transforming them into
implementations - comprise the focus of this paper. We report on
the achievements we have made in these issues. i.e.. what are the
teatures of our specification language that support reuse at the
conceptual level, and what are the techniques we have
accumulated to convert such specifications into implementations.

2. SPECIFICATION LANGUAGE

Qur specification language. Gist. supports the description of the
behaviour required of a process. The motivating source of Gist's
capabilities is the power of natural language descriptions: Gist
attempts to provide constructs to capture this power in a formal
language. Briefiy. these capabilities are as follows:

-a relational and associative mooel! of data: which
captures the logical structure without imposing an
access regime,

-information derivation: which allows for global
declarations describing relationships among data,

- historical reference: the ability to refer to past process
states,

- constraints: restrictions on acceptable system
behaviour in the form of giobal declarations,

- demons: asynchronous processes responding to
defined stimuli, and

- closed system specitication: the ability to implicitly
describe the behaviour of a portion of some larger
system by describing the behaviour required of the
whole system and the interface between that portion
and the remainder.

The primary design goal behind Gist is to minimize the gap
between informal conceptualization and formal specification. This
enables us to formally capture as much as possible of the

P

* \“‘ 'u‘.‘n‘ ~

.

O NI N N S

LR e et
DI . e
e e s .

¥y £ v 0
RN

T
P

X

N

) '-ll"l) AR

I
%!

DN JAARAAARS Ty

e L

development process. particularly the early stages. which would
otherwise have to be performed entirely within the heads of
designers going unrecorded and unassisted by machine tools.
Gist specifications are free of implementation concerns such as
efhciency. data representation and algorithms. instead their
emphasis is on describing required behaviour. Gist s capabilities
support this descriptive (as opposed to prescriptive) style. Gist
specifications tend to /ocalize the expression of features of the
required behaviour (as opposed to implementations., which
achieve optimality by spreading information and control
throughout the program n order to share data and activity).
These aspects combine to make Gist supportive of both intial
specification. and also of later modifications to the specification
Wher modification takes the form of adding further detail. the
existing specification tends to be “robust” in the sense that it
should require Iittie or no change when adaitions do force some
change or when the modification is itself a change (to the existing
specification). the descniptive and localized aspects make it easy
to identity the impact of the modifications on the specification, and
easy to perform the appropriate adjustments. In contrast. a less
expressive specification language would force the mental
conversion of changes at the conceptual level into changes at a
lower. more implementation-oriented. level, with the dual
disadvantages of being harder (more mental effort. less
opportunity for machine support - hence more error prone) and
failing to record some of the development process (less
documentation - hence less comprehensible. and less of a basis
for supporting future change).

3. DEVELOPMENT OF IMPLEMENTATION

Development of an implementation from a Gist specification
necessitates the elimination of uses of Gist's high-level constructs.
since their success in the reaim of specification is at the expense
of freedom from concerns such as efficiency. data representations
and algorithms. Program transtormation is the means by which
we perform such development.

We prefer 10 seek transformations that deai at once with whole
instances of these constructs. as opposed to untolding instances
into lower leve! primitives. In adopting this approach we abandon
the hope for a small set of simple transformations. but retain the
advantage of dealing with the constructs at as high a level as
possible.

For each type of construct. our research has been aimed at
accumulating:

- impiementanor options commonly availabie options
for converting an instance ot that construct into a
more efficient expression of the same behaviour
typicaliy in terms of iower level constructs

- secectior criteriz for selectng among severa!
implementation options applicable to the same
instance. and

- mapoings. 1o achieve the impiementation options via
sequences of equivaience preserving transformations.
E.g.. a (hstorical) reference to the time-ordered
sequence of objects to satigty some predicate may be
mapped Into a data structure that explicitly stores that
sequence code to append objects to that sequence
as they begin to satisty the predicate and code to
repiace the histoncal reference with a simple retrieval
from the data structure

SO ACMN ACH fN PR SO AR WS

(2]
b

rd

»

o - AR R P A A S
R O AT N AT NI AU A RN SR

Qur expenence on small exampies has shown that these are of
recurring use in the development process Samples of our
findings serve to illustrate both the features of Gist and the
transformational techniques that we have accumulated to deal
with them.

4. ANEXAMPLE DOMAIN

In the next section we will use examples drawn from the domain
of a single problem to iltustrate our approach. The problem we
choose is a routing system for distributing packages into
destination bins. This problem was constructed by
representatives of the process control industry to be typical of
their real-world appiications. Hommel's study of various
programming methodologies used this problem as the
comparative example ([Hommel 80].

The figure below illustrates the routing network. At the top. a
source station feeds packages one at a time into the network,
which is a binary tree consisting of switches connected by pipes.
The terminal nodes of the binary tree are the destination bins.

package,
at source

package,
in swifch

Figure 4-1: The package router

When a package arrives at the source station. its intended
destination (one of the bins) is determined. The package is then
released into the pipe leading from the source station. For a
package to reach its designated destination bin. the switches in
the network must be set to direct the package through the network
and into the correct bin.

Packages move through the network by gravity (working against
friction). and so steady movement of packages cannot be
guaranteed. they may "bunch up” within the network and thus
make It impossible to set a switch properly between the passage of

R P A .
B S PSR W ' JARIR I L P, 1)

l.l' l‘ll 0 .
e .
e

pary

M
et e et

5 e W

|'I.":?

PR
PENA A oo ¥

e

PR IE I B
PR 2 R N}
PR L

[|

L BRI

DOROEMRD

two such bunched packages (a switch cannot be set when there 1s
a package or packages in the switch for fear of damaging such
packages). if a new package's destination difters from that of the
immediately preceding package. its release from the source
station is delayed a (precaiculated) fixed length of time (to reduce
the chance of bunching). In spite of such precautions, packages
may still bunch up and become misrouted. ending up in the wrong
bin: the package router is to signal such an event.

Oniy a limited amount of information is available to the package
router to etfect its desired behaviour. At the time of arrival at the
source station but not thereafter. the destination of a package may
be determined. The only means of determining the locations of
packages within the network is a group of sensyrs (placed on the
entries and exits of switches and on the entries of bins); these
sensors detect the passage of packages but are unable to
determine their identity. (The sensors are able to recognize the
passage of individual packages. regardiess of bunching).

5. Gist’s constructs
in this section Gist's major constructs are considered in turn.
and for each we.

- informally describe the semantics of the construct,
with illustrations from the package router domain.

- describe the freedoms the construct provides for
specification,

. discuss how the construct supports the expression of
changed versions of a specification when

incorporating modifications: hypotheticai
modifications to the package router serve as
illustrations. and

- briefly describe some alternative mappings for the
construct, together with criteria for choosing among
these aiternatives.

5.1. Relational and associative model of information

We begin the discussion of Gist's major features by focusing on
its underiying data model. Information in Gist is modeled simply by
typed objects and relations among them.

The package router domain involves oojects of type
package. objects of type switch. etc. Type hierarchies
are possible: for exampie. a switch or a bin might more
generally be considered a location

Reiations among these objects mode! information about this
domain.

The structure of the network is modeled by relations
between locations - i.e.. the connection between
source and lirst pipe, the connection between that first
pipe and the switch to which it ieads. etc.. wili all be
modeied by relations between those ovbsects The
position of a package is modeled by a reiation between
that package and its location: the setting of & switch
{i.e.. the outlet pipe into which the switch 1s currently
directing packages) is modeled by a relation berween
switch and pipe.

The collection of objects and relations at any time during the
interpretation of a specification compnses what we call a "state”.
Change in the domain is modeled by the creation and destruction

)
s

-l LI P TS S Y DI Y ~
FRTATARTY 1V VRIS Vs VRS SO S i Sy AN

of objects and by the insertion and deletion of relations. Each
change is a transition from the current state into a new state.
Multiple changes may occur simuitaneously in a single transition
from one state to the next.

The arrival of a package at the source is modeied by
inserting the position relation to hold between that
package and the source location.

Altering the setting of a switch is modeled by
changing the switch-setting relation, i.e., deleting the
relationship between switch and oid setting, and
inserting the relationship between switch and new
setting.

Simultaneous movement of two packages s
modeled by changing their position relations in the
same transition.

5.1.1. Specification freedom
The relational mode! of information permits the specifier to use
a descriptive reference to an object to refer to that object.

The bin that is the destination of this package.

The pipe into which this switch is set to direct
packages.

The relational data model is a very general data representation.
The specifier need not be concerned about data access paths. tor
instance. because any description of an object may be used as a
reference to that object. Relations may be used in descriptions of
any of the objects that participate in the relationships. In gata
base terminology. this means that the relationships are fully
associative (or. equivalently. that the data base s fully inverted)

The position relation (between package and
location) may be used in gdescribing a locatior "The
locatior that is the position of this package’ and in
describing @ package: “The packagel(s/ whose
position s this location”.

Concern about the statistical distribution of these operations is
unnecessary The implementation process selects particular
physical representations for information that are appropriate for
anticipated patterns of data storage and access

5.1.2. Specitication reuse

The generality of the relational model. and the freedom from
representation concerns that it provides. facilitate the expression
of changed specifications.

A refinement to the router to check that packages
have sutficient postage stamps to pay for delivery to
their respective destinations invoives extra information
-- stamp values on packages. and required stamp
values for destinations. Modeling this extra information
is achieved by defining & new lype. stamp values. and
additional relationships. between packages and stamp
vaiues. and between destinations and required stamp
values

5.1.3. Mappings

The most general solution to implementing information storage
is 10 support an associative reiational data-base and leave the
specification's insertions and retrievals of information unchanged.
In most cases. however. a specification does not indiscriminately
insert or retrisve data: rather, it displays predictable data access
patterns. These can be mapped into appropriate data structures

o«

\"- .

-
T, Wy W, S

s

€, 4 ‘Ifw
..

LR Y I
»
F
o

.
]

.
A

a
a
",
&
At

"

Y ST 2PN

h ol A

——

D)
.

Y

0 » y .
A R

PAS

A LA

t 4
P

[

Vrharryind)

.
D

.
-
-
»
-

(arrays. hash tables. etc..) 1o conserve space and time.

If the relatior that models the destination of a
package (1 e.. a relation betweer the package and the
bin that 1s 1ts destination) 1s accessed in one direction
only. by asking for the pin that is the destination of a
package. then the destingtion information could be
stored as a tieio of a record structure of intormation
associated with each package

Concerns for efficiency of time and space dictate the selection
of data structures. Probabilistic expectations of frequency of use
are not explicitly described in Gist specifications. Clearly. for
impiementation purposes. such intormation wili be of importance
In selectivn

It should be notec tnat many of the issues relating to the
relational oata model are similar to those investigated by the SETL
group [Dewar et a! 79). [Schonberg. Schwartz & Sharnir 81) and by
Rovner {Rovner 78]. Low [Low 76]. and Barstow [Barstow 79}

5.2. Information derivation
Often it is convenient to make use of a relatonship that is
derived from other relationships. Within Gist the dervation of
such a relahonship may be declared once and for all. and serves
to denote all the maintenance necessary 1o preserve the invariant
between the derived relation and the relations upon which it
depends
£ switch may be said to De empty ' there is no
Dackage wnose locanion is tne switch (nence empty ' is
8 unary reiation).

A locanor may De said to be beiow a second
location if it 1s immeaiately below that second location.
Or 1s immediately pelow some third location that is in
turn ‘below’ the second iocation {i.e.. transitive ciosure
of immediately beiow)

5.2.1. Specification freedom

The specificational power of this construct comes from being
able to state a derivation in a single place (.e. this construct
exhibrts the quality of “locaiity”) and then make use ot the derived
information throughout the specification. As with explicitly
inserted relations. data access is fully associative

The cderived ‘below’ relation may be accessed in
either direction. i.e.. given a location. the relation may
be accessed to find either the locations which are
‘below’ that location. or the locations which that
location 1s ‘below ',

5.2.2. Specification reuse
Derived relations provide robustness in the face of specification
change. both because of their localised nature. and because they
are defined in terms of the information upon which they depend
(1.e.. have the "descriptive” quality).
Should the structure of the package router network
be extendea by addition of more pipes. switches and
bins. the definition of the derived relations ‘empty’ and
‘below’ will continue 1o be valid.

On the occasions when the definitions of derived relations must
be modified. the localised nature of their definitions eases the task
of correctly maxing such modifications

5.2.3. Mappings

Since no corresponding construct is likely to be avaiable in any
impiementation language we might choose " we must map the
denvation into explicit data structures and mechantsms to support
all the uses of that information scattered throughout the program
We have a wide range of choices as t0 how we might do this
mapping.

At one extreme. we might simply unfold the derivation at all the
places where a reference to the relation is made. Having done
this. we may completely discard the relation and its derivation.

Wherever the specilication makes reference 10 the
‘empty’ reiation on a switch. unfold the definttion of
‘emply . to leave n its place an expiicit search through
all the packages to getermine whether any of them are
tocated at the switch.

This approach is analogous to backward inference. where
computation 1s pertormed on demand and at the site of the need

At the other extreme we might retain the relation. but distribute
throughout the program the code necessary to explicitly maintain
the invanant betwaen the derived information and the information
upon which it depends.

To maintain the derived relation of switch empty".
introduce explicit storage (in the form of a non-derived
relation) to represent this information. and introduce
the appropriate maintenance code everywhere in the
specification tha! the locations of packages might
change (more precisely. at the places where a package
may become located at. or cease being located at,
switches)

This approach is analogous to forward inference, where
computation 1s performed whenever a modification to a relevant
predicate occurs and at the site of the change. There are two
separate capabilities required by this mapping:

1. determining all those locations in the specification at
which the value of a derived relation could possibly be
changed. and

2..nserting code to do the recalculation at those
locations.

Tne latter capability can be achieved by either recomputing the
defined relation from scratch. or incrementally changing its
present value.

To maintain the sequence of packages in a pipe.
when a package enters the pwe. concatenate that
package onto the end of the maintained sequence;
when & package exits, remove the package from the
front of the maintained sequence.

This is an example of a general techniqgue we call “incremental
maintenance”. and is derived from the work of other researchers
in set-theoretic settings. particularly [Paige & Schwartz 77], who

1Mlny of the Artiicial inteliigence programming languages do provige facilities
for Wing derved 3 in terms of inference processes For gxampie. &
.mptememmon of derived reiations rmight be provided in CONNIVER [McDermott §
Sussman 74] in termg of IF-ADDED or IF.NEEDED methods However. Al
programming langusges in which these facilities are present typcally do not
prowde for the efficient execution one would desire for en optimized
impiementation. nor do these facilities provide precesly the semantics desired
without the incl of sati Yy “truth mar " capabilites, [Doyte 78).
[London 78)

(\iﬁ_"‘ .n)_ ~‘A.'J RRNSRE Vi 3)Y

LA

DA ST A A it it AR I RSN N S

call the techmiaue "formal differentiation”. and [Eariey 75). who
calis it "iterator inversion”.

Untolding a derived relation results in rederivation at points of
use: maintaining it results in redenvation {incrementally or
otherwise) at points of change. It 1s permissible to do the
computation for maintaining the relation at other points. but it
must have its correct value by the time is used.

The choices among the impiementation alternatives suggest
alternatives between storage and computation in the resulting
program. Completely unfoiding the derivation is tending towards
complex recalculation with a minimum of stored data.
Maintenance simplifies retrievals at the expense of the
maintenance operations and the extra storage to hoid the
maintained information.

5.3. Historical reference
Historical reference in Gist specifications provides the ability to
extract information from any preceding state in the computation
history.
Has this package ever been at that switch?,

What was the most recent package to have been in
this switch?,

Was the bin empty when the package entered the
network?

Note that the past can only be queried, not changed.

5.3.1. Specification treedom

Historical reference aliows the specifier to easily and
unambiguously describe whar intormation is needed from earlier
states without concern for the details of how it might be made
available (i.e. like derived information. this construct has the
“descnptive” guality). Reference to the past has been studied in
the database world. where the freedom has been calied "memory
independence”. and temporal logic has been applied to formally
investigate the matter (see. e.g.. [Sernadas 80]). Both constructs
may be mixed. using derived relations in expressing a historical
reference. and using historical reference in defining a derived
relation.

Historical reference: "Was this switch ever
‘empty ™"
Derived relation definiton. “The sequence of

packages to have been located at the source, in their
order of arrival there"”

This exemplifies one of Gist's strengths. the “orthogonality” of the
constructs. i.e.. they may be successfully used in combination.

5.3.2. Specification reuse

Historical reference. like derived information. provides
robustness as a consequence of its descriptive nature, in this
case. robustness in the face of modifications that result in
changed histories.

Should the topclogy of the network be modified, say
to feed the outpu! of severai pipes into the same bin.
then the dJescriptive historical relerence "The
sequence of packages 10 have reached the bin in their
order of arrival” will continue to be valid

P IS D I TR T L N L Y - * N
WP POACIT) €) NOASAT I, JJA'A'JA'ML'L‘,L':\

S L R I e e
W N AN \‘.\\\-'. 15 Wl -\\-" e e . N AT A

A

R O NS A DA i i Sl Sl Pl

5.3.3. Mappings
Two generally applicable methods exist for mapping historical
reference into a reasonable implementation. These are:

1. save the information desired in the earlier state. then
modify the historical reference to extract it from the
saved intormation, or

2. modity the historical reference to rederve the desired
information from the current state.

To use the first method, it is necessary to introduce and maintain
auxiliary data structures to store information that might be
referenced in a later state, and modify the historical references to
extract the desired information from those introduced structures
when needed. The desire for economy of storage in an
implementation encourages the implementor to determine just
what information need be preserved. seex a compact
representation facilitating both storage and retrieval. and chscard
the information once it 1s no longer usetul.

To be prepared to answer the query “what was the
destination of the last package 10 have passed tnrough
this switch?” we could choose to remember the time-
ordered sequence of packages to have beenr in the
switch. or more ethicientry. only the desunatior of the
immediately preceding package. This latter case woulo
require storage space for the identity of only a single
destination bin; upon arrival of a new package. the
identity of its destination would be remembered in that
space, overwriting the old information.

The aiternative method for implementing historical reference 1s
to rederive the desired information in terms of information
available in the current state (without having to retain extra
information from past states).

The identity of the previous package to have been at
this switch might be derived by oeterrmmng which
package in the network is closest 1c and gownnill from
the switch.

We suspect that rederivation is rarely an available option: the
information desired is often not derivable from current avaitable
information. When both options are possible. they present the
classic store/recompute tradeoffs. An implementor must compare
the cost of the derivation with the cost of storage and
maintenance of redundant information to permit simple access.

5.3.4. Idiomatic uses of historical reference

Certain patterns of historical reference recur frequently in Gist
specifications. For example, evaluating <predicate> asof <event,
or <expression> asof <event) (of which What was the setling of the
switch atl the time the package entered the network? is an
exampie). For an idiom like this we can construct special purpose
mappings.? reducing the effort that would be required during
implementation development if a general purpose mapping
technique was applied. A general-purpose mapping technique
would require application of further simplifications to tailor the
result for the special case.

2rhis idiom s mapped into an expiicht relaton b the objects that
parameterize the event and the <predicate> / <expression). together with code to
maintain this relation, namsly to insert the relation whenever the event occurs and
the {predicate) hoids / there exists an obiect denoted by the <exprassion>

’- _.
QRGN A

w4

0 ,‘ *, |" . 2’

»

3

T e

e A
NN

o~
N

»

4
KA A

DL

»

[N ol i S N Y

°

Ay

.-..'I".‘

- QX

Other idioms that we deal with include:
- the |ateat object to satisty a given predicate,

- the sequence of objects ordered by their time of
creation or the time at which they satisfied a given
predicate.

- did event, take piace before Mntz?

5.4. Nondeterminism and constraints
Nondeterminism within Gist occurs in two ways' When use is
made of a descriptive reference that denotes more than one
object.
Set the switch to one of the switch outlets,

or when some specifically nondeterministic control structure is
used

Choose ovetween “Set switch” and “Release
package".

In terms of the behaviour that a Gist specification denotes.
nondeterminism gives rise to a set ol behaviours: an implementor
is free to select any (non-empty!) subset® of those behaviours as
the ones his implementation wili satisfy.

The activity of setting switches is described
nondeterministically by stating that at random times
random switches set themseives to a random one of
their outiet pipes.

Constraints within Gist provide a means ol stating integrity
conditions that must always remain satisfied.

Packages in some location cannot overtake one
another (i.e., a package that entered some location
later than another package cannot leave that location
before that other package).

A switch must be empty in order to change its
setting.

A package must never reach a wrong bin (i.e., some
bin other than its destination

Within Gist. constraints are more than merely redundant checks
that the specification always generates valid behaviours;
constraints serve to rule out those behaviours that would be
invalid.

The nondetermimism of switch setting. in
comunction with the constraint on packages reaching
correc! bins. genotes only benaviours tha! route the
packages to the proper gestination bins.

5.4.1. Specification freedom
The constructs described in previous sections provided
freedoms reilated to information: nondeterminism and constraints.

3l.e.. there msy be behaviours denoted by the specification not dispiayed by the
mplemerntaton Conversely however, #ny behaviour dueplayed by the
implementation must be one of the behaviours denoted by the specitication

4 Athough this would be & desiralie CORSITAMT 10 KMPOSE ON the PACKAQE rOUte.
it would render en implementation impossibie because of the conditions within
which the routsr mechaniem has to operale. most nolably the vagaries of the
movement of pacheges. and the imits on switch setting. 1t Mekes & nice exampie.
though

D)
' N AGY SOG LR Q51 G PG00 0SER 6V, S SR, '3 M) RS S VAL T AT N

e e

and as we shall see. demons too, provide freedoms related to
control.

Where there are several equally acceptable alternatives in the
resolution of a data reference or a control structure choice.
nondeterminism makes it easy to express them all. Where there
are integnty conditions that must be satishied. constraints provide
a concise (i.e.. localised) means o! stating them. Such integrity
conditions may serve as descriptions of the environment in which
the portion to be implemented is to operate. and so provide
information about the environment upon which the implementor
may rely (e.g., the non-overtaking of packages within locations is a
property of the physical routing mechanism). Other integrity

conditions serve as requirements on the behaviour of the)
system, implying that the implementor must implement his on
in such a manner that it will operate with the environment to
satisfy those conditions (e.g.. that the switchbeemptyin¢ .. D

change its setting).

The conjunction of nondeterminism and constraints p1 ¢S
be an extremely powerful specification technique. a specif "
denotes those and only those behaviours that do not violate
constraints. in contrast. an implementation is characterized by
the cunning encoding of its components to interact in ways
guaranteed to result in only valid behaviours.

5.4.2. Specification reuse

Constraints provide robustness in the face of specification
change because by their very nature they guarantee that all the
behaviours (old or new) denoted by a changed specification must
abide by all the constraints that remain in. or have been added to.
the specification.

The constraint that a switch be empty in order to
change its setting assures us that no matter how the
topology of the network might be modified, we may
remain assured that no new behaviour will result in
which a switch setting changes while some package is
present in that switch.

Constraints themselves are readily moditied to refiect changing
criteria.

To further restrnict when a switch setting may be
changed. say to only those occasions when that switch
and the pipe that leads into it are both empty. we
simply modity the constraint accordingly - a single
moditication at only one place in the specification

5.4.3. Mapping away constraints and nondeterminism

A general mapping technique to eliminate constraints is to make
each nondeterministic activity into a choice point. and to uniold
plobal constraints S0 as to provide tests at all points in the
program where the constraint might possibly be violated. When a
violation is detected. a "failure” resuits: this causes backtracking
to the most recent choice point with an alternative choice.

To pltace 8 queens on a chess boarc unde- the
constraint that no queer may attack any other queen
simultaneously piace al! the queens on the board (64°
nondeterministic choices'). and after doing sc. chect
to see whetner the no-capture constraint 1s vioigted - i*
$0. try the next choice of placements [No1e that this 1s
& most inefficient mapping.]

This mapping is similar to the maintenance mapping tor derved
relations. two separate processes are required to impiement the
mapping:

. . . «
TSI S T T PR, N

]

o
KXXr

" 2
e
-’

L

)

L}
WY

-'_ s
sl

'; *y

3
L J
-

|

Pt A

-

:

——

rd

D

=y
Il’l’aJ‘# , ~
“l‘.} '.ﬁ.’ ’

H

‘7’
NS

[/

s
s a ‘.,)

LAY
P

.r. -
I
LAY S

ol

sl

1. determining alt locations in the specification at which
the constraint might be wviolated (similar 1o
determining all locations where the value of a derived
relation could change). and

2. ingerting. at those points, code to do the checks and
backtracking (whereas in the case of derived
relations. the code inserted would have the purpose
of updating the stored value of the relation).

The second capability mentioned above as required for
mapping constraints and nondeterminism implements the
backtracking control mechanism. Our research suggests thatit is
possible to intermix Gist's nondeterminism and constraints with
explicit backtracking. permitting the incremental mapping of
individual nondeterministic choice points. and of the constraints
that impinge upon them (as opposed to having to simultaneously
map away a// the nondeterminism and constraints at once). The
task of building the backtracking mechanism itself is trivial if our
intended target language supports backtracking (as does, for
example. PROLOG [Clocksin & Mellish 81]).

Backtracking. however, presupposes the ability to undo actions
that have been executed since the last choice point. Since this is
often not possible. strict backtracking is not always an option for
mapping to an impiementation of nondeterminism

in controlling the switches in the routing network. we
might be constrained to ensure that tne packages do
no: reach wrong gdestnations. Backtracking
presupposes that we have the ability to return the
packages to the swiiching points after an error is
oetectec and then send them in ditferent directions.
Obviously. in the case of a package router whose
package movement mechanism is no: under our
control. this 1s not an available option.

An alternative technique to mapping nondeterminism into
backtracking is a "predictive” solution. Here. the constraints are
unfolded. but into “point” constraints rather than into calls on a
backtracking failure mechanism. These point constraints are then
pushed back to be incorporated into the choice points. becoming
filters that propose only those choices that guarantee no
constraints will be violated "Pushing” a point constraint
backwards over a statement 1s a matter of reformulating the
constraint into the weakest precondition to that statement that
guarantees execution of the statement will not violate the
constraint. When the constraint is “"pushed” all the way back to a
choice point, it is incorporated as a filter on the choices.

When a switch becomes empty. choose to set it in
the direction that ieads to the destination of the next
package approaching the switch.

Compromise between these two extremes s possible: we may
empioy a backtracking aigorithm, but push some (though not all)
of the unfoided constraint(s) into the choice generators.

In the 8-queens problem. split the nondeterminism
into several successive choices (place the lirst queen,
place the second queen and check for capture. etc.).
and incorporate some of the no-capture constraint into
the placement (by not attempting to place a
subsequent queen on a row already occupied by @&
queen) See [Baizer 81] for a detailed development
illustrating this.

The choice between a backtracking implementation and a
predictive implementation is determined very much by the nature
of the domain of the specification. The capabilities of, and the
control we have of, the effectors® (if there are any in the system
being specified), the amount of information available for making
decisions, and the desired amount of precomputation all affect the
choice of algorithm. Typically, the interesting issue is to develop
the specification toward an implementation that embodies an
algorithm to perform the search efficiently. and not to assume that
the result has been pre-calculated and make use of it.

5.5. Demons

Demons provide Gist's mechanism for data-directed invocation
ol processes. A demon has two components a trigger and a
response. Whenever 2 state change induces & change in the
vaiue of the trigger predicate from faise to true. the demon's
response is invoked.

Whenever a package reaches a wrong bin (some bin
other that its intended destination), send a sigha/

5.5.1. Specification tfreedom

Demons are a convenient construct for situations in which we
wish to specify the execution as an asynchronous activity that
arises from a particular change of state in the modeled
environment. This eliminates the need to identity individual
portions of the specification where actions might cause such a
change and the need to insert into such places the additional
code necessary to invoke the response accordingly. The
specificational power of the demon construct is enhanced by the
power of Gist's other features: for exampie. the trniggering
predicate may make use of derived information

5.5.2. Specification reuse

The descriptive nature of demons -- 1.e.. the description of the
condition upon which some activity 1s to be started -- provides the
robustness. Should modifications to the specification change the
behaviours that may occur. the demons will continue to be
triggered when and only when their triggering conditions are met.

Should the topology of the router network be
moditied so that several pipes lead to the same outpu!t
bin (i.e., the network is no longer a tree), then the
demon that signals arrivals of misrouted packages will
continue to do its signaling regardliess of which pipe
they happen to emerge from.

5.5.3. Mapping away demons

Mapping away a demon invoives identitying all places in the
program where a state change might cause a change of the value
of the demon's trigger from taise to true, and then inserting code
at those places to make the determination and perform the
demon's response when necessary.

To map away a demon which sends a signal every
time & package reaches & wrong bin, introduce code
into the places where package movemen! occurs 1o
check to see whetner tna! package has moved into @
bin other than its gestination: in such a case. pertorm
the signaiting

5E.o . 1n 8 routing network. the switches and conveyor

e SR et T, e W L
MRUIP S I AU SR PSP R I S

T
4.

v
poe.

dind

.

" ‘l." ‘'t '1:_

e

Thus 1s another mapping that maxes use of the capability to
ioentify locations in the specification where the value of a
predicate (in this case the demon's trigger) might be affected (in
particular. change from talse to true). Here the action to be taken
upon getecting such a change 1s to invoke the demon's response.

Demons are a potent source of nondeterminism in the
behaviours denoted by a specification. This s because our
semantics for demon “response” are that a new "line of control"
to perform that response is begun. and that line of control runs in
paralie! with the aiready active line(s) of control. permitting any
aroitrary interieaving that does not violate constraints.

In the package router. specify the benaviour of a
swilch via a gemor that has a ragngom mgger‘. anag
whose response is {0 S€! the switch 10 any of its outlets
{further nongeterminism). Togetner with & constraint
to prohibi: 1ems fromr being routed 1o incorrect
aestinations. this would sutfice to denote pbehaviours in
which switches are set at the appropriate tmes and in
the appropriate directions to eflect correct routing,
while denoting complete freedom of switch behaviour
when their settings are not crucial to the routing of any
packages.

Our experience with both specifying and mapping this form of
nondeterminism is somewhat limited. We anticipate that in many
cases it will be preferable to map this form of nondeterministic
control structure while expressed concisely as demons. rather
than first to unfold those demons throughout the specification and
then to have to manage the resulting disparate instances of
nondeterminism. Our hope is that control nondeterminism
provided by demons. constrained by -constraints which prune out
the undesired effects of arbitrary interleaving, will occur in
commonly occurring styles of usage. for which we will be able to
build idiomatic mappings.

5.6. Closed system style

For specification purposes it is convenient to describe the
behaviour required of an entire system, and to build that
description in terms of information throughout the system. How
that entire system is to be decomposed into components, the
restrictions on the control that components may exert over one
another, and the access that components may have to each
others information. may described separately from the overall
system behaviour description.

in the package router. we describe the behaviour
required of the overall system. namely the routing of
packages. This gescription is expressed in terms of
package locations and destinations Separately. we
describe how the system comprses several
components:

- physical routing mechanism (the binary iree of
source, pipes. switches and bins).

-an uncontroliable and unpredictable
mechanism to move packages (gravity
interacting with friction),

-an unpredictable input of packages at the
source to be routed. and

S)ndicating that in any stase each such demon has the nondeterministic choice
of triggering or not triggering.

i s AN A S R

- the switch controlier which may change switch
settings.

It is our development task to impiemen! the swiltch
controlier so as to interact with the other components
in such a way as (o cause the desired routing of
packages. Furthermore, the switch controlier has only
hmited control of, and access to. the other
components. A switch setting may only be changed
when it 1s empty of packages. The oniy occasion upon
which the controller mechanmism may read the
destination of a package is when that package is at the
source. Once released inito the network, the only
information available to the controlier 1s the passage of
individual packages past sensors, ang even then only
the face that some package has passed is available,
not even the identity of the package.

5.6.1. Specification freedom

Closed system description provides the freedom to describe the
behaviour required of the whole system. and to give this
description in terms of system-wide information. The
decomposition of the system into components is specified
separately. The behaviours of these components are thus
imphicitly defined to be those which in conjunction will achieve the
required system wide behaviour while complying with the
limitations on control and information passing between
components. Maximum freedom is left to the deveioper to choose
any of these implicitly defined behaviours for the components to
be implemented.

5.6.2. Specification reuse

Since system wide behaviour i1s specified directly. modifications
to that behaviour are easy to incorporate. Modifications to the
environment {within which the implemented portion resides) may
also be readily expressed. and the system-wide specification of
required behaviour remains unchanged.

if the physical router mechanism is adjusted to move
packages by means of iixea-speed conveyc- belts sc
as tc prevent packages from bunching up, this extra
property may simply be added to the specification of
the environment. The implementor will then be able to
take advantage of this extra information in his
rederivation of an implementation (and in such a case
could guarantee 100% correct routing).

Having the decomposition stated separately from system
behaviour -- indeed. having it explicitly stated at all -- supports
modifications to the decompaosition.

if the sensors throughout the package router
network are enhanced to report not only the passage of
a package, bu! aiso the destination of the passing
package, then this enhancement may be incorporated
into the specification of the decomposition, permitting
the implementor of the router mechanism to make use
of the extra information (which should result in a
reduction in the amount of storage space for data
required by the impiementation).

5.6.3. Mapping away reliance on system-wide control and
information
The general problem of mapping away such reliance is quite
difficult. Mostow calls this aspect of development
“operationalization”. and has investigated heuristic means for
dealing with it, [Mostow 81].

KECAMABLELHTREHLE CH SRS ERCUTI e GoX

O TR

22l Al

0

e

e
. 'y

]

4

.

A0
e
(Wl
ST
b
j':: For some simple cases of reliance on system-wide information,
0! techniques similar to those used for mapping away historical
) references might prove appropriate - introduce and mamntain
- auxiliary data structures to hold information when it is made
(; available in order to be able 1o supply that information when it is
B . needed. or look for ways to derive the required information from
. . other information that is available.
Y \'- -
1530 6. SUMMARY AND FUTURE WORK
f";.‘ Gist's combination of constructs makes for a good specification
= language. and, we anticipate, will support reuse at the

¥ specification level. We attribute Gist's success to its purposeful
. design -- modeled on the power of natural language descriptions,

»

? : brought together into a coherent formal framework.
- The development methodology we &dvocate is one of
-_:’ transformation of specifications to obtain implementations. The
) success or failure of this methodology for supporting reuse rests
A upon our ability to reperform the transtormational development
upon a modified specification. This is the crucial outstanding
. . research issue.
S The mappings for Gist constructs will comprise the primitive
\ . steps from which Gist developments will be composec. anc the
'.\.. choice criteria between mappings wil! form the basis for selection
."-:.' of appropriate mappings. It has been recognised that
}{ transformational developments must be objects in their own nght.
- so that they may be applied to specificatons to produce
implementations. and appropriately moditied tc be appled to
'\c‘\' modified specifications. [Darlington & Feather 80] Tne language
¥ -.:_'-. for recording such developments must be rich enough to capture
NN the implementor's goal structure -- motivations and design
f\J': decisions -- [Sintzoff 80] and [Wile 82). The system that applies
'-,,-f:.\ such developments must deal with this goal structure. methods for
achieving goals. and selection criteria for choosing among
4 competing methods. and. for the foreseeable future. will not be
_‘.-:'J fully automatic. so must rely upon interaction with a skilled
NS implementor. See [Fickas 82] for a first cut at such a system.
WX
‘ ;:, Acknowledgements
! ' S This research was supported by Defense Advanced Research
Projects Aguncy contract MDA 903 81 C 0335. Views and
S} conclusions contained in this document are those of the author
- .‘:- and should not be interpreted as representing the official opinion
) or policy of DARPA. the U.S. Government. or any other person or
N agency connected with them. | would like to thank the other
:-.‘j members (past and present) of the IS) Transformational
' Implementation group: Bob Balzer. Don Cohen. Steve Fickas. Neil
. Goldman, Phil London. Jack Mostow. Bill Swartout and Dave Wile.

e arrty & I

AN

References

(Baizer 81) Baizer. R.. "Transtormational implementation. An

..-

[Dewar et al 79] Dewar. R.B.K.. Grand. A.. Liu. S. 8 Schwartz. J.T..
“Programming by refinement. as exemplified by the SETL
representation sublanguage " ACM Transactons or
Programming Languages and Systems 1. (1).1979. 27-49.

[Doyle 79] Doyle. J.. "A truth maintenance system " Artificial
inteliigence 12, (3) 1979.231.272

[Earley 75) Earley. J.. "High level iterators and a method for
automatically designing data structure representation.”
Computer Languages 1. (4). 1975. 321-342.

[Fickas 82] Fickas. S.F., "Automating the transtormationa!
development of sottware ", Ph.D. thesis. University of
California, Irvine. 1982

[Hommel 80) Hommel. G.. Vergleich verschiedener
Spezifikationsverfahren am Beispiel einer Paketverteilaniage,
Kernforschungszentrum Karisruhe, Technicai Report, August
1980.

[London 78] London, P., "A dependency-based modeliing
mechanism for problem solving.” in AF/PS Conference
Proceedings, Vol. 47, pp. 263-274, 1978.

[Low 76] Low. J.R., interdisciplinary Systems Research. Volume
16: "Automatic Coding: Choice of Data Structures”.
Birkhauser Veriag. Basel & Stuttgart. 1976.

[McDermott & Sussman 74] McDermoft, D. & Sussman, G. J.. The
CONNIVER reference manuail, MIT, Technical Report Memo
259a, 1974.

[Mostow 81) Mostow. D.J.. “Mechanical transformanon of task
neuristics into operational procedures” . Ph.D. thesis.
Computer Science Department Carnegie-Meiton University.
1981.

[Paige & Schwartz 77] Paige. R. & Schwartz. J.. "Expression
continuity and the formal ditterentiation of algorithms." in
Proceedings. 4th ACM POPL Symposium. Los Angeles
pp. 58-71. 1977.

[Rovner 78] Rovner, P., "Automatic representation selection for
associative data structures.” in Proceedings. AFIPS Nationa!
Computer Conference. Anaheim, Calitorma. pp. 691-701.
AFIPS Press, New Jersey. June 1978.

[Schonberg. Schwartz & Sharir 81] Schonberg. E.. Schwartz. J.T.
& Sharir. M.. "An automatic technique for selection of data
representations in SETL programs.” ACM Transactions or
Programming Languages and Systems 3. (2). April 1981.
126-143.

. e Example.” /EEE Transactions on Software Engineering SE-7.
£, (1). 1981, 3-14, [Sernadas 80] Sernadas. A., "Temporal aspects of logicai
. procedure definition,” information Systems 5. (3). 1980.
\.-..' [Barstow 79) Barstow. D.R.. "Knowledge-Based Program 167.187.
"oV e Construction”. Eisevier North-Holiand. 1979.
Xor [Sintzotf 80] Sintzoft, M.. “Suggestions for composing and
"y [Clocksin & Mellish 81] Ciocksin, W.F. & Mellish. C.S.. specitying program design decisions.” in 4th International
:.-:; Programming in Prolog. Springer Veriag, Beriin, 1981. Symposium on Programming. Paris. April 1880.
KA , .
on (Darlington & Feather 80] Darlington. J. & Feather. M.S.. “A [Wile 82] Wile. D. S.. Program oeveiopments formal explanations
o transformational approach to program modification”. of implementations, I1S|. 4676 Admiralty Way. Marina del Rey
f‘: Department of Computing and Controi. imperiai College. CA 90281. Technical Report RR-82-99. 1882. To appear in
~,:, London. Technical Report 80/3. 1980 CACM
at
o
v
SN
i
A 58
BAN
b '-',.Q'
"\J. A L 4 A W e - -~ - n -~ . ayn
oo MG B AT SO T SO AR S AN STA

LR Y

L4

wva ¥,

oo
-

| AV AN g I

-
L. e sm

v . WYy, . .
AN v LN AL

X

a

5 v

3, 1.:‘

~

A’

g AP I

:‘-

RN,

™=

22

%

o

I MY

S e . .
‘. s _“w ‘o Y. S - s t.
LY PN SN VR R PRI S S

“a te Te e Te - T
P SN NSRS S P

AR

o

RN A

Ey,

